Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria.

نویسندگان

  • Philip H Choi
  • Thu Minh Ngoc Vu
  • Huong Thi Pham
  • Joshua J Woodward
  • Mark S Turner
  • Liang Tong
چکیده

Cyclic di-3',5'-adenosine monophosphate (c-di-AMP) is a broadly conserved bacterial second messenger that has been implicated in a wide range of cellular processes. Our earlier studies showed that c-di-AMP regulates central metabolism in Listeria monocytogenes by inhibiting its pyruvate carboxylase (LmPC), a biotin-dependent enzyme with biotin carboxylase (BC) and carboxyltransferase (CT) activities. We report here structural, biochemical, and functional studies on the inhibition of Lactococcus lactis PC (LlPC) by c-di-AMP. The compound is bound at the dimer interface of the CT domain, at a site equivalent to that in LmPC, although it has a distinct binding mode in the LlPC complex. This binding site is not well conserved among PCs, and only a subset of these bacterial enzymes are sensitive to c-di-AMP. Conformational changes in the CT dimer induced by c-di-AMP binding may be the molecular mechanism for its inhibitory activity. Mutations of residues in the binding site can abolish c-di-AMP inhibition. In L. lactis, LlPC is required for efficient milk acidification through its essential role in aspartate biosynthesis. The aspartate pool in L. lactis is negatively regulated by c-di-AMP, and high aspartate levels can be restored by expression of a c-di-AMP-insensitive LlPC. LlPC has high intrinsic catalytic activity and is not sensitive to acetyl-CoA activation, in contrast to other PC enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cyclic Dinucleotide c-di-AMP Is an Allosteric Regulator of Metabolic Enzyme Function

Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP-interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the ...

متن کامل

Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones.

1. In epididymal adipose tissue synthesizing fatty acids from fructose in vitro, addition of insulin led to a moderate increase in fructose uptake, to a considerable increase in the flow of fructose carbon atoms to fatty acid, to a decrease in the steady-state concentration of lactate and pyruvate in the medium, and to net uptake of lactate and pyruvate from the medium. It is concluded that ins...

متن کامل

Mechanism for acute control of fatty acid synthesis by glucagon and 3':5'-cyclic AMP in the liver cell.

Labeling experiments with chicken liver cell monolayers and suspensions show that glucagon and N6, O2-dibutyryladenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP) block fatty acid synthesis from acetate without appreciably affecting cholesterogenesis from acetate or acylglyceride synthesis from palmitate. Neither acetyl-CoA carboxylase [acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC...

متن کامل

Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce l...

متن کامل

Dominant Lactic Acid Bacteria in Naturally Fermented Milks from Messinese Goat’s Breed

Background: Lactic Acid Bacteria (LAB) are an important group of microorganisms responsible for the fermentation dairy products. This study was done to identify the dominant lactic acid bacteria in naturally fermented milks from Messinese goat’s breed. Methods: Eighteen individual raw milk samples collected from Messinese goat’s breed were acidified at pH 5.20 and left to spontaneously ferment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 35  شماره 

صفحات  -

تاریخ انتشار 2017